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1. Introduction

Recently there has been considerable progress in understanding the quantum corrections to

the hypermultiplet moduli spaces arising from compactifying type II strings on Calabi-Yau

threefolds (CY3). These moduli spaces appear as sigma models for hypermultiplets in the

N = 2, D = 4 low-energy effective supergravity action. Since for type II strings the dilaton

lives in a hypermultiplet, this sector is subject to both perturbative and non-perturbative

stringy corrections.
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In general the real dimension of the hypermultiplet moduli space is given by 4nH where

the number of hypermultiplets is given by nH = h1,2 + 1 for type IIA and nH = h1,1 + 1

for type IIB, where hi,j are the Hodge numbers of the CY3. Local supersymmetry implies

that the hypermultiplet moduli space has to be quaternion-Kähler [1], i.e., for nH > 1 the

space has to be Einstein with holonomy contained in Sp(1) × Sp(nH). The case nH = 1 is

special. Here the definition of quaternion-Kähler geometry implies that the hypermultiplet

moduli space has to be Einstein with self-dual Weyl curvature. This situation appears

in type IIA compactifications on rigid CY3, for which the Hodge number h1,2 = 0, and

corresponds to the universal hypermultiplet.

At tree-level, the metric on the hypermultiplet moduli space can be determined either

through the c-map [2 – 4] or by explicit dimensional reduction from ten dimensions [5, 6].

In perturbation theory, the hypermultiplet moduli space admits a number of commut-

ing isometries which simplifies the description of the underlying quaternionic geometry.

In that case, one can use the off-shell formulation for tensor multiplets which describe

4nH -dimensional quaternion-Kähler manifolds with nH +1 commuting isometries [7]. This

framework allowed to determine the perturbative one-loop corrections for generic Calabi-

Yau compactifications [8], building on earlier work [9], and generalizing the case of the

universal hypermultiplet [10, 11]. It was further argued in [8] that a non-renormalization

theorem protects the hypermultiplet moduli space metric from higher loop corrections.

Non-perturbatively, there can be spacetime instanton corrections coming from wrapped

Euclidean branes over the relevant cycles of the CY3 [12]. These will generically break (some

of) the isometries present in perturbation theory. Beyond that, not much is known about

their contribution to the hypermultiplet moduli space in the generic case with h1,2 6= 0. This

is due to our poor understanding of non-perturbative string theory, as well as our limited

knowledge of the quaternion-Kähler geometry that underlies the hypermultiplet moduli

space, see e.g. [13] for a general discussion. For the universal hypermultiplet, however,

there are some partial results either for membrane instantons [14], or for NS-fivebrane

instantons [15]. These results grew out of earlier work [16, 17, 11], see also [18 – 21].

Recently, these instanton corrections also played a prominent role in the construction of

meta-stable de Sitter vacua [14, 22].

The aim of this paper is to determine the non-perturbative corrections to the universal

hypermultiplet moduli space metric, including both membrane and fivebrane instantons.

The key property for studying such corrections is that the corresponding metric must be

quaternion-Kähler. Such metrics have been studied extensively in the context of Euclidean

relativity and it was found in [23] that the general metric can be encoded in a single

function satisfying a non-linear partial differential equation. We then find solutions to this

equation which describe generic instanton corrections. As a non-trivial test, we reproduce

the formulae for the instanton actions calculated in the supergravity approximation in [16,

17]. Moreover, our results are in perfect agreement with the explicit fivebrane instanton

calculations done in the supergravity approximation [15]. In addition, for both membrane

and fivebrane cases, we analyze the contributions from the fluctuations around the one-

instanton to all orders in the string coupling constant. In particular, this includes the

one-loop determinant around the instanton. It is remarkable that the constraints from
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quaternionic geometry, combined with sensible boundary conditions, are restrictive enough

to determine the form of the non-perturbative corrections that arise in string theory.

The rest of the paper is organized as follows. In section 2 we review the classical

universal hypermultiplet moduli space and its perturbative corrections. In section 3 we

present the metric for a generic four-dimensional quaternion-Kähler manifold in terms

of a single function h and determine this function for the universal hypermultiplet and its

perturbative corrections. Then, in section 4, we discuss the one-instanton corrections to the

function h, together with the perturbative fluctuations around it. In particular we obtain

explicit expressions for instanton corrections due to membranes and fivebranes and show

their agreement with previously known results obtained in the semi-classical supergravity

limit. We end with a brief discussion of our results in section 5. The technical details of

our calculations can be found in the appendices.

2. The perturbative universal hypermultiplet

We start by reviewing the results for the perturbatively corrected universal hypermultiplet.

This theory arises from compactifying type IIA strings on a rigid CY3. The hypermultiplet

sector of the 4-dimensional low energy effective Lagrangian can be obtained from dimen-

sional reduction. At tree-level the relevant bosonic terms read

e−1LT = −R− 1
2 ∂µφ∂

µφ+ 1
2 e2φHµH

µ

− 1
2e−φ(∂µχ∂

µχ+ ∂µϕ∂
µϕ)− 1

2H
µ(χ∂µϕ− ϕ∂µχ) .

(2.1)

Here φ is the four-dimensional dilaton1, Hµ = 1
6ε
µνρσHνρσ is the NS two-form field strength,

and ϕ and χ can be combined into a complex scalar C that descends from the holomorphic

components of the RR 3-form with (complex) indices along the holomorphic 3-form of the

CY3. The NS two-form can then be dualized to an axion D by introducing a Lagrange

multiplier

e−1LLM = −Hµ∂µD , (2.2)

and eliminating Hµ through its equation of motion. From the supergravity point of view

it is often convenient to redefine this axion using the field

σ = D − 1
2χϕ . (2.3)

In terms of χ, ϕ, σ and r = eφ the classical universal hypermultiplet Lagrangian becomes

e−1Lcl
UHM = −R− 1

2r2

[
(∂µr)

2 + r
(
(∂µχ)2 + (∂µϕ)2

)
+ (∂µσ + χ∂µϕ)2

]
. (2.4)

The sigma model target space of the classical universal hypermultiplet is SU(2, 1)/U(2) [2,

3], with isometry group SU(2, 1).

The perturbative corrections to the universal hypermultiplet have recently been ob-

tained in [10]. There it was found that the Lagrangian (2.4) receives a non-trivial one-loop

1Our conventions are such that the string coupling constant is related to the asymptotic value of the

dilaton via gs = e−φ∞/2.
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correction while higher loop contributions can be absorbed by a coordinate transformation.

The perturbatively corrected hypermultiplet metric then reads

ds2
UHM =

1

r2

[
r + 2c

r + c
dr2 + (r + 2c)

(
dχ2 + dϕ2

)
+

r + c

r + 2c
(dσ + χdϕ)2

]
. (2.5)

The constant c was obtained as

c = −4ζ(2)χ(X)

(2π)3
= − 1

6π
(h1,1 − h1,2) , (2.6)

with χ(X) denoting the Euler number of the CY3, and one should set h1,2 = 0 in our case.

At the perturbative level the hypermultiplet metric (2.5) retains four unbroken isome-

tries. First of all there is a 3-dimensional Heisenberg group of isometries acting as shifts

in σ, χ and ϕ

r → r, χ→ χ+ γ, ϕ→ ϕ+ β, σ → σ − α− γϕ , (2.7)

where α, β and γ are real parameters. Additionally one has a rotational symmetry in the

χ-ϕ plane parameterized by the real angle δ

r → r, D → D, χ→ χ cos δ − ϕ sin δ, ϕ→ χ sin δ + ϕ cos δ . (2.8)

In this frame it is obvious that the isometry (2.8) corresponds to a phase transformation

of the complex coordinate C = 1
2 (χ + iϕ) which, microscopically, is related to a rescaling

of the Calabi-Yau holomorphic three-form by a phase. Notice that when working in terms

of σ the isometry (2.8) acts non-trivial on σ:

σ → σ + χϕ sin2 δ + 1
4 (ϕ2 − χ2) sin(2δ). (2.9)

Generically, one expects that (some of) these isometries will be broken by instanton cor-

rections. For instance, fivebrane instantons will break the shift symmetry in σ to a discrete

subgroup, whereas membrane instantons will break the shift symmetry in ϕ or χ. We will

discuss the fate of these isometries in more detail in section 4.

3. Four-dimensional quaternion-Kähler geometry

After having reviewed the perturbatively corrected universal hypermultiplet metric, we now

proceed and introduce the Przanowski framework describing a general four-dimensional

quaternion-Kähler metric. Subsequently we will recast the perturbative universal hyper-

multiplet in this framework and derive the linear partial differential equation governing

small perturbations around the perturbative metric in subsections 3.2 and 3.3, respectively.

3.1 The master equation

Four-dimensional quaternion-Kähler spaces coincide with Riemannian Einstein manifolds

with a self-dual Weyl tensor. Such manifolds with a non-vanishing cosmological constant l

were characterized in [24, 25, 23] in terms of solutions of a single differential equation. More

– 4 –
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precisely, it has been shown that there always exists a system of local complex coordinates,

z1 and z2, such that the metric takes the form

ds2 = gαβ̄ (dzα ⊗ dzβ̄ + dzβ̄ ⊗ dzα) , (3.1)

where α, β = 1, 2, zβ̄ = z̄β and

gαβ̄ = −3

l

(
∂α∂β̄h+ 2δ2

αδ
2̄
β̄ eh

)
. (3.2)

This form for the metric components was also derived more recently in [26], where it was

generalized to quaternion-Kähler spaces of higher dimensions. Notice that the metric is

completely characterized in terms of a single real function h(zα, zᾱ). The constraints from

quaternionic geometry imply [24] the following non-linear partial differential equation

∂1∂1̄h · ∂2∂2̄h− ∂1∂2̄h · ∂1̄∂2h+ (2∂1∂1̄h− ∂1h · ∂1̄h) eh = 0 . (3.3)

We call (3.3) the master equation. It describes in a compact way all four-dimensional

quaternion-Kähler geometries.

Furthermore, in [23] this general result was specialized to the case of quaternion-Kähler

metrics with one Killing vector field. It turns out that there are two distinct situations

depending on the direction of the isometry. According to [23] there can be shifts along

either

(A) z2 − z2̄, or (B) z1 − z1̄. (3.4)

In both cases the metric is completely determined by the solutions of (3.3), which do not

depend on the combination (3.4).

For the case (B), it was shown in [23] that the master equation (3.3) reduces to the

three-dimensional Toda equation

∂z∂z̄F + ∂2
r eF = 0, (3.5)

by means of the Lie-Bäcklund transformation

z = z2, z̄ = z̄2, r = −
(
∂z1+z1̄h

)−1
, F = h− log

(
∂z1+z1̄h

)2
. (3.6)

For a related discussion on such geometries, see also [27]. So all self-dual Einstein metrics

possessing a Killing vector of type (B) can be characterized by solutions of the three-

dimensional Toda equation. For the case (A) no such transformation is known explicitly,

although the results of [27] imply this is still possible.2

It is somewhat surprising that the two classes in (3.4) have some physical meaning.

For fivebrane instantons only, one can work in a framework in which the isometry of type

(A) is manifest. In the case of membrane instantons only, i.e., in the absence of fivebrane

charge, the isometry of type (B) is preserved. This follows from the results of the next

subsection. The general situation is however when both types of instantons are present

and hence no isometries will be preserved. This is the situation we describe in this paper,

and we will therefore stick to the master equation (3.3) and its solutions.

2We thank P. Tod for a discussion on this issue.
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3.2 The universal hypermultiplet in the Przanowski framework

When using the Przanowski metrics above as target spaces in a low-energy supergravity

action, supersymmetry requires to fix the value of the Ricci-scalar constructed from these

metrics in terms of the gravitational coupling constant κ. In our conventions where we have

chosen κ−2 = 2, the proper value is R = −6, implying that the value of the cosmological

constant is fixed to l = − 3
2 .

To recast the perturbatively corrected universal hypermultiplet metric into Przanowski

form, one should find a coordinate transformation which maps (2.5) to the metric (3.2)

with the function h satisfying (3.3). This is achieved by setting

z1 =
1

2
(u+ iσ), z2 =

1

2
(χ+ iϕ), (3.7)

where

u = r − 1

2
χ2 + c log(r + c) . (3.8)

The corresponding function h0 is given by

h0 = log(r + c)− 2 log r , (3.9)

and we have added the subscript 0 in order to indicate the perturbative solution. In this

formula, r has to be understood as a function of z1 and z2. The inverse transformation

of (3.8) can only be done explicitly for c = 0. In that case, the classical solution is given

by h0 = − log r with

c = 0 : r = z1 + z̄1 +
1

2
(z2 + z̄2)2 . (3.10)

It is easy to verify that this solves (3.3). To verify that the function (3.9) is a solution

of (3.3) it is useful to first rewrite the master equation in terms of the real fields u, σ, χ

and ϕ,

(∂2
χ + ∂2

ϕ)h (∂2
u + ∂2

σ)h− (∂χ∂uh+ ∂ϕ∂σh)2 − (∂χ∂σh− ∂ϕ∂uh)2

+
(

2(∂2
u + ∂2

σ)h− (∂uh)2 − (∂σh)2
)

eh = 0. (3.11)

Changing basis again to the variables r, σ, χ and ϕ using the identities

∂u =
r + c

r + 2c
∂r , ∂χ|u = ∂χ|r + χ

r + c

r + 2c
∂r , ∂uh0 = −1

r
, ∂χh0 = −χ

r
, (3.12)

it is then straightforward to check that (3.9) solves the master equation.

Moreover, note that h0 is a function of u and χ, and thus of z1 + z̄1 and z2 + z̄2 only.

Hence there are shift symmetries associated with both z1 − z̄1 and z2 − z̄2 such that the

perturbative hypermultiplet metric fits simultaneously into both cases (3.4). In particular,

this means that it can be described by a solution of the Toda equation (3.5). This fact was

extensively used in [14] when studying membrane instanton corrections to the universal

hypermultiplet. Performing the Lie-Bäcklund transformation for the solution (3.9), we

obtain eF = r + c which reproduces the result found in [14].

– 6 –
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3.3 Deformations around the perturbative solution

After having established the Przanowski description of the perturbatively corrected uni-

versal hypermultiplet we now proceed and discuss the inclusion of non-perturbative cor-

rections. In this course we will work in the region of the moduli space where the string

coupling is small, so that these corrections are exponentially suppressed. In terms of the

real variables this means that r and u are much larger than any other variable.

The solution describing the non-perturbative corrections to the universal hypermulti-

plet can be written as

h = h0(u, χ) + Λ(u, σ, χ, ϕ) + · · · . (3.13)

Here h0(u, χ) is the perturbative solution (3.9) and Λ is an exponentially small correction.

We assume that it encodes the one-instanton effects, whereas multi-instanton corrections

are hidden in the dots. They will not be considered in the following and therefore we

do not display them explicitly in our ansatz. We will therefore work in the linearized

approximation and assume that the solution can be extended to a solution of the full non-

linear equation by setting up an iteration scheme. For the case of the Toda equation, this

was demonstrated in [14].

Utilizing (3.11) we can derive a partial differential equation for Λ which implements the

constraints from quaternion-Kähler geometry. Substituting the ansatz (3.13) into (3.11)

and expanding the result to the first order in Λ one finds

(
∂2
χh0 + 2eh0

)
(∂2
u + ∂2

σ)Λ + ∂2
uh0(∂2

χ + ∂2
ϕ)Λ− 2∂χ∂uh0(∂χ∂u + ∂ϕ∂σ)Λ

−2eh0∂uh0∂uΛ + eh0
(
2∂2

uh0 − (∂uh0)2
)

Λ = 0. (3.14)

For our purpose it is, however, more convenient to work directly in terms of the hypermul-

tiplet variables. Therefore, we trade the variable u for r by means of (3.8). Then using

the formulas (3.12), one can rewrite (3.14) as

[(
r + χ2 + 3c+

c2

r + c

)
∂2
σ + (r + c)∂2

r + ∂2
χ + ∂2

ϕ − 2χ∂ϕ∂σ +

(
3 +

2c

r

)
∂r +

1

r

]
Λ = 0.

(3.15)

This equation is the master equation for the instanton corrections.

3.4 Solution generating technique

Before we discuss the solutions of (3.15) in the next section, let us first point out a general

solution generating technique [28]. The master equation (3.3) has an invariance group of

transformations, as one can easily verify,

z1 → z̃1 = f(z1, z2) , z2 → z̃2 = g(z2) , (3.16)

where f and g are two arbitrary holomorphic functions. These transformations lead to new

solutions of (3.3) of the form

h(z1, z2)→ h̃(z1, z2) = h
(
f(z1, z2), g(z2)

)
− log(g′(z2)ḡ′(z̄2)) , (3.17)

– 7 –
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where the prime stands for the derivative.

In general these new solutions lead to new metrics with different asymptotics. In our

case, we want the new metric to have the same asymptotic behavior, namely the one given

by (3.9). This puts certain constraints on f and g, and a class of functions which leave

the boundary conditions invariant are the ones that generate the isometries. For instance,

choosing

f(z1, z2) = z1 − γz2 − 1

4
γ2 − 1

2
iα , g(z2) = z2 +

1

2
(γ + iβ) , (3.18)

generates the Heisenberg group of isometries (2.7), and similarly for the rotations (2.8).

Clearly, the solution h0 as in (3.9) is invariant, and this guarantees that the asymptotic

form remains the same. On the other hand, the instanton deformations Λ from (3.13)

will not be invariant since some of the isometries from the Heisenberg group are broken

non-perturbatively. However, at the level of the hypermultiplet metric the new solutions

are related by a coordinate transformation. Thus, the solutions generated in this way do

not produce physically inequivalent spaces.

This feature can be overcome when one works at the linearized level. It is clear that

the perturbative isometries also generate new solutions of the linearized eq. (3.15). But

in contrast to the non-linear case, this technique allows to generate new target spaces by

taking linear combinations of the transformed instanton corrections. For example, having

a solution Λ0(r, χ, ϕ, σ) of (3.15), the transformation ϕ → ϕ + β generates the family of

solutions

Λβ(r, χ, ϕ, σ) = Λ0(r, χ, ϕ + β, σ). (3.19)

All of them are physically equivalent. But the superposition of instanton solutions of the

form ∫
dβ C(β)Λβ(r, χ, ϕ, σ) (3.20)

with any function C(β) having support on more than one point, generically leads to phys-

ically distinct target spaces.

These facts can be used to simplify the derivation of the general instanton solution,

since they allow us to focus on one particular member of a family of solutions related

by the isometry transformations. Once we find its exact form, all other solutions will

follow by applying the perturbative isometry transformations and considering their linear

combinations.

4. Instanton corrections to the universal hypermultiplet

4.1 Supergravity results about instanton actions

Before we start the calculation of instanton corrections to the universal hypermultiplet, let

us briefly review the results obtained in the supergravity framework about the instanton

actions [16, 17, 15].

There are two classes of instanton solutions, describing the wrapping of a NS-fivebrane

or a membrane in type IIA string compactifications on a rigid CY3. They produce correc-

tions to the metric proportional to e−1/g2
s or e−1/gs respectively [12], and we repeat (see

– 8 –
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footnote 1) that the relation with the dilaton is gs = e−φ∞/2. These instantons can also

be described as finite action solutions to the four-dimensional supergravity equations of

motion for the universal hypermultiplet [16, 17], see also [19] for an earlier reference.

It was found that, for the NS-fivebrane instantons, the supergravity instanton action

is given by3

S
(5)
inst = |Q5|

(
1

g2
s

+
1

2
χ2

)
+ iQ5σ. (4.1)

Here, χ is treated as a coordinate on the moduli space, similarly to the dilaton. It is

natural to interpret Q5 as the instanton number for the Euclidean NS-fivebrane, wrapped

over the entire Calabi-Yau space. The θ-angle like term eiQ5σ breaks the isometry of the

classical metric along σ to a discrete subgroup Z. Notice further that the shift symmetry

in ϕ is unbroken so, in the presence of fivebrane instantons only, this remains an isometry.

Finally, the shift symmetry in χ is explicitly broken.

The membrane instantons, as found in [16, 17, 15], can be parameterized by two charges

and the instanton action is

S
(2)
inst =

(
|Q2|+

1

2
|χQ5|

)√
4

g2
s

+ χ2 + iQ2ϕ+ iQ5σ. (4.2)

For χ = 0 one obtains a more standard instanton action inversely proportional to the string

coupling constant, S = 2|Q2|/gs, in which Q2 plays the role of the membrane charge. Notice

that they also contain the fivebrane charge Q5. The microscopic string theory interpretation

of the additional terms proportional to χ remains unclear. In the next subsections, we will

show however that there exist solutions to the master equation (3.15) that reproduce these

results exactly.

The fate of the isometries for membrane instantons differs from the fivebrane case, in

the sense that the isometry along ϕ is also broken to a discrete subgroup. When Q5 is

switched off, the shift along σ remains to be an isometry.

4.2 General constraints on instanton corrections

Our main goal is to determine the instanton corrections to the perturbative hypermultiplet

metric (2.5) using the same strategy as in [14]. Namely, we find exponentially small correc-

tions to the solution (3.9) of the master equation (3.3). These corrections in turn generate

corrections to the metric, and by the results of [24, 25] the full metric will automatically

satisfy the constraints of the quaternionic geometry. The main difference with [14], based

on solutions of the Toda equation, is that we do not suppose the existence of an isometry

since the combination of both membrane and fivebrane instantons does not preserve any

continuous isometry.

3Actually, in [16, 17] the instanton action was written in terms of ∆χ = χ−χ0 and σ̂ = σ+χ0ϕ, where

χ0 is an arbitrary constant that was interpreted as a RR flux. It is clear that this result for the instanton

action can be obtained from (4.1) by applying the shift isometry in χ (2.7), with parameter γ = −χ0.

Finding a solution of the master equation consistent with (4.1) is therefore sufficient. Similarly for the

membrane instantons. We come back to this issue in subsection 4.3

– 9 –
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Our goal is to solve the master equation (3.15) and consequently determine the in-

stanton corrected hypermultiplet moduli space metric. Of course, this master equation

possesses a large number of solutions. We are not interested in all of them but only in

those which are physically appropriate. Therefore, we impose a set of requirements on

the solution to be satisfied. Our conditions on admissible instanton corrections are the

following:

1. For small string coupling gs the instanton contributions should be exponentially sup-

pressed.

2. In each instanton sector, there should be a perturbative series in gs that describe the

fluctuations around the instanton. These we represent as an (exponentiated) Laurent

series, bounded from below and including the term log gs.

3. The shift symmetry in the NS scalar σ (or D) should be broken by a theta-angle-like

term only. This requirement is justified by the fact that the NS scalar comes from

dualizing the NS two-form in four dimensions. The breaking of the isometry is trig-

gered by the boundary term in the dualization process. This boundary term precisely

generates the theta-angle that breaks the shift symmetry to a discrete subgroup.

4. For instanton solutions containing several charges, for instance the membrane and

fivebrane instanton charges, the limit where one of the charges vanishes should still

give rise to a regular solution which is exponentially suppressed.

5. The theta-angle terms should be independent of gs. By this we mean that the purely

imaginary terms in the exponent are independent of gs

Some of these requirements reflect a more stringent condition, namely that the full non-

perturbative solution leads to a regular metric on the hypermultiplet moduli space. The

perturbatively corrected metric corresponding to (3.9) develops a singularity at r = −c,
and the instantons are supposed to resolve this singularity. This resolution can however not

be understood in the one-instanton approximation we are working in. One would need to

determine and sum up the entire instanton series to see how the singularity gets resolved.

For an example of how this can work, we refer to [29].

An instanton correction which satisfies the first two conditions can be written in the

following general form

Λ = A0r
α exp


−

p∑

k=1/2

fkr
k +

∞∑

k∈N/2

Ak
rk


 . (4.3)

The terms containing the fk are proportional to powers of the inverse string coupling

constant g−1
s =

√
r. They reflect the non-perturbative nature of the solution. The terms

containing the Ak describe the fluctuations around the instanton. Usually, these are written

in terms of a power series in gs in front of the exponent, but they can be exponentiated

as in (4.3) up to the term rα that would lead to a logarithm in the exponent. Here α is

some constant, p ∈ N/2, and the sums over k run over (positive) integers and half-integers.
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All the coefficients, including A0, are complex functions of χ, ϕ and σ. The solution we

construct is therefore complex, but we can add the complex conjugate to obtain a real

solution. These two sectors will describe instantons and anti-instantons respectively. To

leading order, which is the approximation we are working in, there is no mixing between

these two sectors.

However, combining the conditions (3) and (5), one immediately concludes that all fk
and Ak except A0 must be real and σ-independent. We further study this generic ansatz

in appendix A where we demonstrate that

∀k > 1 : fk = 0 . (4.4)

We also prove there, in the linearized approximation we are working in, that there are no

solutions with both f1 and f1/2 non-vanishing. Such terms might be generated however at

subleading order, and would correspond to a combined system where both membrane and

fivebrane instantons are present.

Thus, in accordance with the supergravity result, there are two classes of instanton cor-

rections satisfying our conditions, which scale as e−f1/g2
s and e−f1/2/gs , respectively. These

two classes are clearly related to NS-fivebrane and membrane instantons respectively [12].

As is known in string theory and will be confirmed by solving the master equation, in

the first case the perturbative expansion around the instanton goes in even powers of gs,

whereas in the second case all integer powers contribute.

In the following we discuss the most general solutions, up to the action of the isometry

group (see the end of section 3.3) of (3.15) satisfying all the above requirements which fit

in these two classes.

4.3 Fivebrane instantons

In this subsection we study instanton corrections arising due to a Euclidean NS-fivebrane

wrapping the entire Calabi-Yau. From the supergravity analysis it is known that the

corresponding instanton action scales like g−2
s and such corrections fit to our solutions

with non-vanishing f1. Since the perturbative expansion around such an instanton should

go in even powers of gs, one arrives at the following ansatz

Λ(5) = A0r
α exp

(
−f1r +

∞∑

k∈N

Ak
rk

)
. (4.5)

In appendix B we solve the master equation (3.15) using the ansatz (4.5) and subject

to the constraints listed above. We find the following exact solution4:

Λ(5) = e±iQ5(σ+ 1
2
χϕ) e−

Q5
4 (χ2+ϕ2) Z(r) . (4.6)

4In fact, we can find more general solutions where the function Z(r) is replaced by Z(r, ρ) with ρ =

χ2 +ϕ2. All these solutions have the same semi-classical behavior and differ in the subleading terms of the

gs expansion only. In the main text, we have focused on the simplest type of solution given by Z(r). Some

more details on the general case can be found in appendix B.
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Here, Q5 is strictly positive, Q5 > 0, and we denoted

Z(r) =
C eQ5r

r(r + c)cQ5

∫ ∞

1
e−2Q5(r+c)t dt

t1+2cQ5
, (4.7)

where C is some undetermined constant. Notice that this solution respects the U(1) isom-

etry (2.8). Its leading term in the expansion in powers of gs reads

Λ(5) ≈ Cr−2−cQ5 e±iQ5(σ+ 1
2
χϕ) exp

[
−Q5

(
r +

1

4

(
χ2 + ϕ2

))]
. (4.8)

By expanding Z(r) to higher powers in 1/r, one generates the loop expansion around the

one-instanton sector to all orders in the string coupling constant.

By looking at the form of the exponent, we observe that this solution does not agree

with the supergravity result (4.1). However, the instanton correction (4.6) is only one

member of a family of solutions related by the perturbative isometry transformations. In

particular, one can use the shift symmetry (2.7) to restore the isometry along ϕ which is

manifest in (4.1). For this let us consider an instanton correction given by the following

integral

Λ̃(5) ≡
√

Q5

4π

∫ ∞

−∞
Λ(5)(r, σ, χ, ϕ + β) dβ = e±iQ5σ e−

1
2
Q5χ2

Z(r) . (4.9)

The leading term of this solution now becomes

Λ̃(5) ≈ Cr−2−cQ5 e±iQ5σ exp

[
−Q5(r +

1

2
χ2)

]
, (4.10)

and shows precise agreement with the supergravity result (4.1) for the instanton action.

The isometry transformations allowing to generate new solutions can be applied as

well to the solution (4.9). For example, using the γ-shift symmetry in χ (2.7), one gener-

alizes (4.9) to

Λ̃(5)
χ0

= e±iQ5(σ+χ0ϕ) e−
Q5
2

(∆χ)2
Z(r) , (4.11)

where ∆χ = χ−χ0 and χ0 is an arbitrary constant. This reproduces the instanton solution

of [17] where χ0 was interpreted as a RR-flux, see also footnote 3.

If instead one uses the rotation isometry (2.8), one obtains instanton corrections of the

following form

Λ̃
(5)
δ = e±iQ5(σ+χϕ sin2 δ+ 1

4
(ϕ2−χ2) sin(2δ)) e−

Q5
2

(χ cos δ−ϕ sin δ)2

Z(r). (4.12)

Notice that for the particular angle δ = π/2 the correction (4.12) coincides with the one

obtained by integrating (4.11) over χ0

Λ̃
(5)
π/2 = e±iQ5(σ+χϕ)e−

Q5
2
ϕ2
Z(r) , (4.13)

which is invariant under the γ-shift. On the other hand, integrating (4.12) with respect to

δ, one can restore the original U(1) symmetric solution (4.6). Indeed, it is easy to show

that ∫ 2π

0
Λ̃

(5)
δ

dδ

2π
= e±iQ5(σ+ 1

2
χϕ) e−

Q5
4 (χ2+ϕ2)Z(r) = Λ(5). (4.14)
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Thus, the solutions (4.9) and (4.6) generate two equivalent bases of instanton corrections

and the integral transformations allow to pass from one to the other. Notice that the

integral transform (4.14) maps the angle variable σ to the scalar D dual to the NS 2-form

(see (2.3)).

It is instructive to discuss the fate of the perturbative isometries for each particular

solution. Every Λ̃
(5)
δ is invariant with respect to discrete shifts of σ and continuous shifts

along a particular direction in the χ-ϕ plane (accompanied by a compensating transfor-

mation of σ), whereas the rotation symmetry (2.8) is broken completely. In particular

Λ̃(5) = Λ̃
(5)
δ=0 preserves the shift symmetry in ϕ, and therefore falls into class (A) as defined

in (3.4). In contrast the solution Λ(5) as in (4.6) is symmetric in χ and ϕ and respects

the U(1) isometry corresponding to (2.8), whereas all continuous shifts are broken. Thus

all our basis five-brane solutions preserve a residual symmetry group is Z × R where the

discrete factor corresponds to shifts of σ and R comes from either the rotation or the shift

symmetry in the χ-ϕ plane. Linear combinations of these basis solutions will, however,

generically break this residual symmetry to Z.

The question that now remains is which solution corresponds to the physically realized

one in non-perturbative string theory. From our analysis, all solutions are on equal footing

and preserve and break the same amount of isometries, although the anomalies appear

in different sectors. However, these solutions yield different metrics and hence different

low-energy effective actions. A possibility is that this also happens in string theory. From

quantum field theory we know that, in the presence of more than one (classical) symme-

tries, it is possible to move anomalies from one current to another, depending on how one

quantizes the theory and which regularization scheme is chosen. It is conceivable that such

a mechanism also works in non-perturbative string theory. In that case, all our solutions

could be considered as physically equivalent. It would be very interesting to understand

this mechanism in more detail.

4.4 Membrane instantons

Since in this case the instanton action scales like g−1
s , we have the following ansatz

Λ(2) = A0r
α exp


−f1/2

√
r +

∞∑

k∈N/2

Ak
rk


 . (4.15)

The master equation (3.15) is solved in appendix C where the following two exact solutions

are found

Λ
(2)
1 =

C

r
eiQχχ+iQϕϕK0(2Q2

√
r + c) , (4.16)

Λ
(2)
2 = C ′

(√
1 + χ2

4(r+c) −
χ

2
√
r+c

)2cQ5

r
√

4(r + c) + χ2
e±iQ2ϕ∓iQ5σ

× exp
[
−
(
Q2 +

χ

2
Q5

)√
4(r + c) + χ2

]
, (4.17)
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where K0 is the modified Bessel function and we require Q2 and χQ5 to be strictly positive.

In the first solution the charges are related by

Q2
2 = Q2

χ +Q2
ϕ . (4.18)

The leading terms in the expansion in powers of gs for the two instanton corrections are

Λ
(2)
1 ≈ C

r
eiQχχ+iQϕϕ exp

[
−2Q2

√
r
]
, (4.19)

Λ
(2)
2 ≈ C ′r−3/2 e±iQ2ϕ∓iQ5σ exp

[
−(2Q2 + χQ5)

√
r
]
. (4.20)

By further expanding in powers of gs, one generates the loop expansion around the mem-

brane instanton. Notice that the two solutions have a different leading power of r in front

of the exponent. This power is fixed by extending the leading order solution to the full

one-instanton result, and depends crucially on the presence of Q5.

The first solution (4.16) reproduces the leading behavior of the instanton corrections

found in [12] and in [14]. It depends on two charges associated with both RR fields.

However, based on the analysis [14], which goes beyond the linear order in Λ, one would

expect that continuation of the solution to multi-instanton sectors will require setting one

of the charges in (4.16) to zero.

The second solution (4.17) nicely coincides with the result (4.2) based on the su-

pergravity analysis for the computation of the instanton action. It also depends on two

charges, Q2 and Q5, but their origin is different. For Q5 = 0, the solution preserves the

shift symmetry in σ and therefore belongs to class (B) in (3.4). For Q5 6= 0, we observe

that the second charge gives rise to the factor e±iQ5σ, which is the same as in the fivebrane

instanton solution. Thus, it is natural to expect that the charge Q5 does have its origin

in the NS-fivebrane, as was proposed in [17]. This fact also explains why the corrections

including this Q5 charge were not found in [14]. The reason is that the application of

the Toda equation requires the presence of the isometry in σ, whereas non-vanishing Q5

necessarily breaks it.

An interesting feature is that the instanton solution (4.20) is defined only for the phases

(the theta-angle like terms) of a particular relative sign. Since for χ > 0 both Q5 and Q2

should be positive, the phases should be of different signs in this case. Correspondingly, in

the opposite case of χ < 0, the charges must have opposite sign and the phases are of the

same sign. This indicates that only a configuration of an instanton and (anti-)instanton is

stable for χ < 0 (χ > 0) and thus the stability depends on the sign of the RR field.

4.5 Instanton corrected metric

Once Λ is found, one can determine the corrections to the hypermultiplet metric (2.5). In

terms of the real coordinates (3.7) the Przanowski metric takes the form

ds2 =
(
∂2
uh+ ∂2

σh
) (

du2 + dσ2
)

+
(
∂2
χh+ ∂2

ϕh+ 2eh
) (

dχ2 + dϕ2
)

+2 (∂χ∂uh+ ∂ϕ∂σh) (dudχ+ dσdϕ) + 2 (∂χ∂σh− ∂ϕ∂uh) (dσdχ− dudϕ) . (4.21)

– 14 –



J
H
E
P
0
9
(
2
0
0
6
)
0
4
0

Plugging u(r, χ) from (3.8) and the instanton corrected function h from (3.13), and keeping

only the linear terms in Λ one obtains the following result

ds2 = ds2
UHM + ds2

cor, (4.22)

where the instanton correction to the hypermultiplet metric reads

ds2
cor =

((
f−1 ∂r

)2
Λ + ∂2

σΛ
) (
f2dr2 + dσ2

)

+

(
∂2
χΛ + (∂ϕ − χ∂σ)2 Λ + f−1 ∂rΛ +

2(r + c)

r2
Λ

)
dχ2

+

((
∂χ + χf−1 ∂r

)2
Λ + ∂2

ϕΛ +
2(r + c)

r2
Λ

)
dϕ2

+2 (∂χ∂rΛ + f (∂ϕ − χ∂σ) ∂σΛ) drdχ

+2
((
∂χ + χf−1 ∂r

)
f−1 ∂rΛ + ∂ϕ∂σΛ

)
dσdϕ

+2
(
∂χ∂σΛ− f−1 (∂ϕ − χ∂σ) ∂rΛ

)
((dσ + χdϕ)dχ− f drdϕ) , (4.23)

and

f ≡ r + 2c

r + c
. (4.24)

The complete hypermultiplet moduli space metric including membrane and fivebrane in-

stantons is based on taking the sum Λ = Λ(5) + Λ(2), at least in the one-instanton approx-

imation.

We can also consider the cases of membranes and fivebrane instantons separately.

In [15] fivebrane instanton corrections were explicitly computed using the four-dimensional

effective supergravity action as a microscopic theory. Such an approach has of course

its limitations, since one cannot compute the fluctuations around the instantons within

supergravity. However, the results for the instanton action and correlation functions can

be expected to give a reliable answer in the semi-classical approximation, with the one-loop

determinants left unspecified. The metric obtained in this way was presented as

ds2 =
1

r2
dr2 +

1

r

(
(1− Y )dχ2 − 2iỸ dχdϕ+ (1 + Y )dϕ2

)
+

1

r2
(dσ + χdϕ)2 , (4.25)

where in our notations

Y = Y+ + Y− , Ỹ = Y+ − Y− , Y± =
1

16π2
e±iQ5σ

(
S

(5)
inst

)2
K1−loop e−S

(5)
inst . (4.26)

Here, S
(5)
inst is the real part of the fivebrane instanton action (4.1) and K1−loop is the one-loop

determinant which remained unknown.

To show that this result agrees with the one obtained in (4.23), let us choose in (4.23)

Λ = Λ
(5)
+ + Λ

(5)
− where Λ

(5)
± denote the fivebrane solutions (4.9) with plus and minus signs

in the σ-dependent exponent, respectively. Then the instanton correction to the metric in

the leading approximation is

ds2
cor ≈ 2Q5

(
Λ

(5)
+ + Λ

(5)
−
) (
−dχ2 − (1− 2Q5χ

2)dϕ2 + 2Q5χ (dσdϕ+ drdχ)
)

−2iQ5χ
(

Λ
(5)
+ − Λ

(5)
−
)

(dσdχ− drdϕ+ χdχdϕ) . (4.27)
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It is easy to show that the following change of variables

χ→ χ+ 2Q5rχ
(

Λ
(5)
+ + Λ

(5)
−
)
, ϕ→ ϕ+ 2iQ5rχ

(
Λ

(5)
+ − Λ

(5)
−
)
, (4.28)

brings the metric (4.27) to the form

ds2
cor ≈ 2Q5

(
2Q5χ

2 − 1
) [(

Λ
(5)
+ + Λ

(5)
−
) (

dϕ2 − dχ2
)
− 2i

(
Λ

(5)
+ − Λ

(5)
−
)

dχdϕ
]
. (4.29)

Upon identification

Y± = 2Q5

(
2Q5χ

2 − 1
)
rΛ

(5)
± , (4.30)

one finds precise agreement with the instanton corrections to the metric in (4.25). Due to

the leading behavior (4.10), the identification (4.30) is compatible with (4.26). Moreover, it

allows us to read off the behavior of the one-loop determinant, up to a numerical constant,

K1−loop = 64π2C g6+2cQ5
s

(
χ2 − 1

2Q5

)
. (4.31)

One can do a similar analysis for membrane instantons, by plugging in the solu-

tion (4.16) or (4.17) into the metric (4.23). Since in this case, we have no supergravity (or

string theory) calculations to compare with, we refrain from giving explicit formulae.

5. Discussion

In this paper, we have used the constraints from quaternion-Kähler geometry to determine

the structure of the membrane and NS-fivebrane instanton corrections to the universal

hypermultiplet moduli space. As we have shown, the constraints reduce to solving a non-

linear differential equation in terms of a single function. To describe the one-instanton

corrections, including the perturbative fluctuations around it, it is sufficient to find solutions

of the linearized differential equation, which is what we did in this paper. The solutions

that we presented still contain undetermined integration constants. To fix these constants,

one presumably needs to do a microscopic string theory calculation like the computation

of the one-loop determinant around the membrane or fivebrane instanton.

To go beyond the one-instanton sector, one needs to solve the full non-linear differ-

ential equation. This can be done by setting up an iteration scheme similar to the one

described in [14]. Most ideally the entire instanton series sums up to some special function

respecting the symmetries of non-perturbative string theory compactified on Calabi-Yau

threefolds. This is similar in spirit as to how modular functions in ten-dimensional IIB

supergravity effective actions arise and determine the contributions from D-instantons by

imposing SL(2,Z) symmetry non-perturbatively [30]. We leave this for future investigation.
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A. Generic form of an instanton correction

This appendix discusses some generic properties of instanton corrections to the universal

hypermultiplet which arise as a consequence of the master equation (3.15). In particular

it is established that the master equation does not allow for solutions where the leading

gs-dependence of the instanton action is of the form Sinst ∝ 1/gns , n ≥ 3. Furthermore it

is shown that there are no solutions satisfying the “instanton conditions” (1) - (5) which

simultaneously include non-vanishing 1/g2
s and 1/gs-terms in the instanton action. The

later property implies that the three-charge instanton actions discussed in [19] do not give

rise to supersymmetric corrections to the universal hypermultiplet moduli space.

Our starting point is the ansatz (4.3)

Λ = A0 r
α exp


−

p∑

k=1/2

fkr
k +

∞∑

k∈N/2

Ak
rk


 , (A.1)

where, according to our general discussion, p = N/2 is finite and all fk, Ak except A0 are

real and σ-independent. We then substitute this ansatz into the master equation (3.15)

and expand the resulting l.h.s. divided by Λ in inverse powers of r. This gives a system of

differential equations on the coefficients fk and Ak. Let us solve them one by one taking

into account the conditions listed in section 4.2.

A.1 Leading gs dependence of the instanton action

We start by proving that there are no solutions where the leading gs-dependence of the

instanton action is of the form Sinst ∝ 1/gns , n ≥ 3.

Let us assume that p > 1. Then the first non-trivial equation appears at the order r2p

and reads

(∂χfp)
2 + (∂ϕfp)

2 = 0. (A.2)

This implies that fp is a constant. Taking this into account, one finds the next equation

at the order r2p−1

p2f2
p + (∂χfp− 1

2
)2 + (∂ϕfp− 1

2
)2 = 0. (A.3)

Since all fk are real, the only solution of this equation is fp− 1
2

= const and fp = 0. By

induction this implies that all fk with k > 1 must vanish.

The case k = 1 is special. In this case eq. (A.2) still holds, implying that f1 is constant.

The analog of (A.3), however, is modified according to

A−1
0 ∂2

σA0 + f2
1 + (∂χf1/2)2 + (∂ϕf1/2)2 = 0 , (A.4)

and has solutions for non-vanishing f1. Thus the master equation restricts the ansatz for

the instanton corrections to the form

Λ = A0 r
α exp


−f1r − f1/2

√
r +

∞∑

k∈N/2

Ak
rk


 , (A.5)

with f1 being a positive constant.
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A.2 Absence of combined membrane and fivebrane instantons

Now we want to prove that there are no solutions satisfying our conditions (1) to (5) where

f1 and f1/2 are both non-vanishing. As we already know, f1 must be a (positive) constant,

say f1 = |Q5|. Then the general solution of (A.4) can be found by separation of variables

and is based on

A0(χ, ϕ, σ) = Ã0(χ, ϕ) eiQσσ + Â0(χ, ϕ) e−iQσσ , (A.6)

where5

Qσ =
√

(Q5)2 + (∂χf1/2)2 + (∂ϕf1/2)2 . (A.7)

In the next step one establishes that the σ-independence in the coefficients Ak, k >

0 requires that Qσ is constant. To this end one observes that when substituting the

solution (A.6) into the equations arising at subleading powers in r these equations become

polynomials in σ with σ-independent coefficients. In order for the solution to be consistent,

all these coefficients have to vanish separately. In particular considering the coefficient

multiplying the σ2-term at order r0 one obtains:

(
∂χ
(
(∂χf1/2)2 + (∂ϕf1/2)2

))2
+
(
∂ϕ
(
(∂χf1/2)2 + (∂ϕf1/2)2

))2
= 0 . (A.8)

As a result, f1/2 must satisfy

(∂χf1/2)2 + (∂ϕf1/2)2 = Q̃2
5 , (A.9)

where the constant Q̃2
5 is fixed by (A.4) as

Q̃2
5 = Q2

σ −Q2
5 . (A.10)

Eq. (A.9) can be solved using the following trick. Introduce a function y(χ, ϕ) such

that

∂χf1/2 = Q̃5 cos y, ∂ϕf1/2 = Q̃5 sin y. (A.11)

This solves (A.9) but the function y must satisfy the integrability condition

cos y ∂χy + sin y ∂ϕy = 0. (A.12)

The general solution of this equation fits into two classes where y is either a non-trivial

function of χ and ϕ or simply a constant. We consider these two cases in turn.

The case y 6= const

In this case solution of (A.12) can be written in an implicit form

ϕ cos y − χ sin y = F (y), (A.13)

where F (y) is an arbitrary function. The corresponding function f1/2 is

f1/2 = 2Q2 + Q̃5

(
χ cos y + ϕ sin y −

∫
F (y) dy

)
. (A.14)

5In the following we restrict ourselves to Â0(χ, ϕ) = 0, which corresponds to considering perturbations

due to instantons only. Anti-instantons can be added at any stage by requiring the reality of the solution.
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Let us show that this solution is not consistent with our conditions on the instanton

corrections. For this we go to the next constraint, which arises at the order r1/2:

(|Q5| − ∂2
χ − ∂2

ϕ)f1/2 − 2
(
∂χf1/2 ∂χ + ∂ϕf1/2 ∂ϕ

)
logA0 + 2iQσχ∂ϕf1/2 = 0. (A.15)

First note that for Q̃5 = 0, f1/2 = 2Q2 is just a constant and (A.15) requires Q2 = f1/2 = 0.

This is, however, not consistent with our requirement that both f1 and f1/2 are non-zero.

Thus we take Q̃5 6= 0 in the following. In this case eq. (A.15) can be used to determine A0.

It is convenient to use the independent variables y and χ instead of ϕ and χ. Using

eqs. (A.11), (A.14) and (A.13) it then follows that

2Q̃5 cos y ∂χ logA0 = 2|Q5|Q2 + Q̃5|Q5|
(

χ

cos y
+ F (y) tan y −

∫
F (y) dy

)

+ 2iQ̃5Qσχ sin y − Q̃5 cos y

χ+ F (y) sin y + F ′(y) cos y
,

(A.16)

where the derivative with respect to χ is taken at constant y. ¿From this result one

immediately concludes that the three charges Q5, Q̃5 and Q2 cannot all be independent.

To avoid singularities at vanishing Q̃5, Q2Q5 should either vanish or be proportional to

Q̃5. Assuming that one of this situations is realized, one finds A0

A0 =
A(y) eiQσ(σ+ 1

2
χ2 tan y)

(
χ+ F sin y + F ′ cos y

)1/2 exp

[
Q̃2χ

cos y
+
|Q5|χ
2 cos y

(
χ

2 cos y
+ F̃ (y)

)]
, (A.17)

where A(y) is undetermined function and we introduced Q̃2 = Q2|Q5|
Q̃5

and

F̃ (y) = F (y) tan y −
∫
F (y) dy. (A.18)

To make further conclusions, one has to consider the equation at the order r0

−Q2
σ

(
χ2 + 3c

)
+ 1

4 f
2
1/2 + cQ2

5 − 2α|Q5| − 2
(
∂χf1/2 ∂χ + ∂ϕf1/2 ∂ϕ

)
A1/2

+A−1
0

(
∂2
χ + ∂2

ϕ

)
A0 − 2iQσχ∂ϕ logA0 − 3|Q5| = 0. (A.19)

From this equation one can determine the coefficient A1/2. However, since A1/2 is real, the

imaginary part of the equation imposes conditions on the functions introduced above. One

can show that for non-vanishing Qσ (Qσ = 0 leads to Q̃5 = Q5 = 0) it vanishes only if6

A(y) = C
√

cos y exp

( |Q5|
4

F̃ 2(y) + Q̃2F̃ (y)− iQσ
2

(
F 2 tan y +

∫ (
(F ′)2 − F 2

)
dy

))
.

(A.21)

6For a special solution

F (y) = ϕ0 cos y − χ0 sin y, (A.20)

where χ0, ϕ0 are some constants, there is additional possibility to add in the exponent of (A.21) the term

iQyy with Qy being a constant. However, such a term does not affect any further conclusions.
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Plugging this result into (A.17), one finds

A0 =
C eiQσ(σ+ 1

2 (tan y(χ2−F 2)−
R

((F ′)2−F 2)dy))
( χ

cos y + F tan y + F ′
)1/2 e

Q̃2

“
χ

cos y
+F̃
”

+
|Q5|

4

“
χ

cos y
+F̃
”2

. (A.22)

One observes that due the sign of the last term in the exponent of A0 the instanton

correction diverges in the region where χ
cos y + F̃ is large. Such a region can be achieved,

for example, by keeping y fixed and considering large χ. Therefore, we are in contradiction

with condition 1 from our list. This implies that Q5 must vanish in agreement with our

statement that either f1 or f1/2 vanish.

The case y = const

There still remains a possibility to have another solution of (A.12) which is y = const. It

gives

f1/2 = 2Q2 + Q̃5(χ cos y + ϕ sin y). (A.23)

However, one can use the rotation isometry (2.8) and the comment in the end of section 4.2

to put y = 0. Thus, in this case it is enough to consider

f1/2 = 2Q2 + Q̃5χ. (A.24)

Notice that it fits to the more general solution (A.14) where however y should be considered

as a constant instead of to be determined by (A.13).

To investigate this type of solution further, one can proceed as in the previous case.

Then eq. (A.15) and regularity assumptions again imply that either Q2Q5 vanish or ∼ Q̃5

and

A0 = C eiQϕϕ eiQσσ+Q̃2χ+ 1
4
|Q5|χ2

. (A.25)

The ϕ-dependence thereby follows from the vanishing of the imaginary part of (A.19),

yielding A(ϕ) = C eiQϕϕ. Thus, again for non-vanishing Q5 the solution diverges for large

χ and should be discarded. As a result, only instanton corrections where either f1 or f1/2

are non-vanishing are admissible.

B. Solution of the master equation in the five-brane case

We now proceed and solve eq. (3.15) with boundary conditions corresponding to a five-

brane instanton. In order to arrive at the exact solution (4.6) we thereby follow a two step

procedure. In the first step we substitute the ansatz (4.5) into the master equation for

instanton corrections and expand the resulting expression in inverse powers of r. Equating

the coefficients in this expansion to zero leads to partial differential equations for the

functions Ak which can be solved order by order. Thereby it turns out that the dependence

of the Ak on ϕ and χ can be deduced from the first few orders in the perturbative expansion.

This knowledge allows to refine the ansatz (4.5) in such a way that it results in a partial

differential equation governing the dilaton dependence of the solution. The solution of this

equation then gives rise to the exact one-instanton correction which includes all orders of

perturbation theory around the instanton.
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We start by adapting the results of the previous section to the case of fivebrane in-

stantons by setting f1/2 = 0. Eq. (A.4) then implies that 7

f1 = |Q5|, A0 = Ã0(χ, ϕ)eiQ5σ. (B.1)

The function Ã0 is determined by eq. (A.19) with f1/2 = 0 and Qσ = Q5:

(∂2
χ + ∂2

ϕ)Ã0 − 2iQ5χ∂ϕÃ0 − (χ2 + 2c)Q2
5 Ã0 − (2α + 3)|Q5| Ã0 = 0. (B.2)

One class of solutions to this equation can be found by substituting Ã±0 = e±
1
2
Q5χ2

Â±0
and passing to complex coordinates z = 1

2 (χ + iϕ). The partial differential equations

determining Â±0 (z, z̄) then become

+ : ∂z∂z̄Â
+
0 + 2Q5(z + z̄)∂zÂ

+
0 − κ+Â+

0 = 0,

− : ∂z∂z̄Â
−
0 − 2Q5(z + z̄)∂z̄Â

−
0 − κ−Â−0 = 0,

(B.3)

with

κ± = 2c(Q5)2 + (2α + 3)|Q5| ∓Q5 . (B.4)

Both equations can be solved by separation of variables. The separable solutions are

labelled by a complex eigenvalue λ and are given by

Â+
0,λ =C (λ+ 2Q5z)

κ+
2Q5 e−Q5z̄2+λz̄,

Â−0,λ =C (λ− 2Q5z̄)
− κ−

2Q5 eQ5z2+λz.
(B.5)

Since the functions Ã±0 resulting from (B.5) have different asymptotics at large χ and ϕ

they provide linearly independent solutions. The general solution of (B.2) is then given by

linear combinations of these two families

A0 = eiQ5σ

∫
d2λ

(
a+(λ) e

1
2
Q5χ2

Â+
0,λ(χ, ϕ) + a−(λ) e−

1
2
Q5χ2

Â−0,λ(χ, ϕ)
)
, (B.6)

with arbitrary functions a±(λ). For large values of χ and ϕ only one of the branches

in (B.6) is bounded. Which of the two branches is regular thereby depends on the sign of

Q5 and is given by A−0 (A+
0 ) for positive (negative) Q5, respectively. The instanton solution

consists of the bounded term only

A0 = eiQ5σ

∫
d2λa(λ) (λ− |Q5|(χ− iε ϕ))−κ e

i
2
ϕ(Q5χ+ελ) e−

|Q5|
4

(χ2+ϕ2)+ 1
2
χλ , (B.7)

where

ε = sign(Q5) , κ = 2 + α+ c|Q5| . (B.8)

Note that the parameter λ appearing in the solution (B.7) can be generated by the

solution generating technique discussed in subsection 3.4. To illustrate this, we start from

the solution A0 with a(λ) ∝ δ(λ),

A0 = C (χ− iε ϕ)−κ eiQ5(σ+ 1
2
χϕ) e−

1
4
|Q5|(χ2+ϕ2), (B.9)

7In principle one should also include a term proportional to exp(−iQ5σ) in A0. Since the final solution

for Λ has to be real, these terms can be restored by adding the complex conjugate of the solution found

from A0 given below.
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with C being a constant. The λ-dependent solution can then be obtained by applying the

β and γ shifts, eq. (2.7), to (B.9) and identifying λ = −|Q5|(γ − iεβ). Superposing the

corresponding solutions with a suitable measure yields the general solution (B.7). Based on

this observation, we can then simplify our further analysis by working with the particular

solution (B.9) in the following.

To get some insights on the field dependence of the subleading coefficients Ak(χ, ϕ),

k ≥ 1 we pass to the next order in the expansion and consider the coefficient at order r−1.

Equating this coefficient to zero results in a partial differential equation for A1(χ, ϕ)

(∂2
χ + ∂2

ϕ)A1 + 2 (∂χ logA0 ∂χ + (∂ϕ logA0 − iQ5χ) ∂ϕ)A1

+2|Q5|A1 − c2Q2
5 − 2c(α + 1)|Q5|+ (α+ 1)2 = 0.

(B.10)

This equation is solved by substituting A0 from (B.9) and splitting the resulting complex

equation into its real and imaginary part. Taking into account that Ak(χ, ϕ), k ≥ 1 are

real the imaginary part yields

(
Q5 − 2κε (χ2 + ϕ2)−1

)
(ϕ∂χ − χ∂ϕ)A1(χ, ϕ) = 0 . (B.11)

This implies that A1(χ, ϕ) = A1(ρ), with ρ = χ2 + ϕ2. Rewriting the real part of (B.10)

in terms of ρ gives an ordinary differential equation for A1(ρ)

4ρ∂2
ρA1−2 (ρ|Q5|+ 2κ− 2) ∂ρA1 + 2|Q5|A1− c2Q2

5−2c(α+ 1)|Q5|+ (α+ 1)2 = 0 , (B.12)

which has the solution

A1(ρ) = (2κ− 2 + |Q5|ρ)

[
C1 + C2

∫
dρ

ρκ−1 e
1
2
|Q5|ρ

(2κ − 2 + |Q5|ρ)2

]

− 1

2|Q5|
(
c2Q2

5 + 2c(α+ 1)|Q5| − (α+ 1)2
)
.

(B.13)

In the limit Q5 → 0 the solution A1(ρ) is regular for α = −1 only. But since Q5 is the

only instanton charge of the solution, and the instanton “does not exist” if Q5 = 0 we do

not insist on the regularity of A1(ρ) at this point in accord with condition (4). In fact we

will argue below that the physical instanton solution should correspond to κ = 0 and, by

virtue of (B.8), to α = −2− c|Q5|.
At higher orders of the expansion the pattern encountered for A1(χ, ϕ) repeats itself.

The partial differential equations which determine the functions Ak(χ, ϕ) for k ≥ 2 again

split into a real and imaginary part. The later has to vanish independently at every order

in the expansion and is given by

(
Q5 − 2κε (χ2 + ϕ2)−1

)
(ϕ∂χ − χ∂ϕ)Ak(χ, ϕ) = 0 . (B.14)

Based on these equations we conclude that

Ak(χ, ϕ) = Ak(ρ) , k ≥ 1 . (B.15)
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This result motivates the following refined ansatz for the five-brane instanton correc-

tions

Λ(5) = (χ− iε ϕ)−κ eiQ5(σ+ 1
2
χϕ) e−

1
4
|Q5| ρ Z(r, ρ)

= ρ−κ/2 eiεκ arctan(ϕ/χ) eiQ5(σ+ 1
2
χϕ) e−

1
4
|Q5| ρ Z(r, ρ) .

(B.16)

Substituting this ansatz into the master equation (3.15) gives rise to a partial differential

equation for the unknown function Z(r, ρ)

[
(r + c)∂2

r + 4ρ∂2
ρ +

(
3 +

2c

r

)
∂r − 2(|Q5|ρ+ 2κ− 2)∂ρ

−Q2
5

(
r + 3c+

c2

r + c

)
− |Q5|(1 − 2κ) +

1

r

]
Z(r, ρ) = 0 .

(B.17)

The general solution can be found by separation of variables. We will however focus on a

particular class of solutions, namely those for which Z(r, ρ) = Z(r) is independent of ρ. In

terms of the perturbative expansion this corresponds to setting the integration constants

Ci appearing in the coefficients Ak(ρ) to zero (cfg. (B.13)). In this case (B.17) simplifies

to an ordinary differential equation for Z(r). Setting

Z(r) = r−1 (r + c)c|Q5| Z̃(ξ(r)) , ξ = r + c , (B.18)

the resulting equation for Z̃(ξ) takes the form

(
∂2
ξ +

q

ξ
∂ξ −Q2

5 − |Q5|
q − 2κ

ξ

)
Z̃(ξ) = 0, (B.19)

with q = 1 + 2c|Q5|. For non-zero values of κ the solution to this equation is given by

Whittaker functions (cfg., e.g.,AS ).

The case κ = 0 is special as in this case the θ-angle like term ∝ exp(iεκ arctan(ϕ/χ))

in (B.16) is absent. While such terms do not lead to a violation of the conditions (1) -

(5) stated in subsection 4.2, it seems very unlikely that the five-brane instanton solution

actually contains such angle-terms. Therefore we will focus on κ = 0 in the following. In

this case the general solution of (B.19) is

Z̃(ξ) = C1 e|Q5|ξ + C2 (2|Q5|)q−1 e|Q5|ξΓ (1− q, 2|Q5|ξ) , (B.20)

where Γ(p, x) =
∫∞
x e−ttp−1 dt is the incomplete gamma function. The first term in (B.20)

increases exponentially in ξ = r+c and violates condition (1) while the second term indeed

gives rise to a solution which is exponentially suppressed for large values of the dilaton.

Consequently we set C1 = 0 while keeping C2 = C as a free parameter. The resulting

five-brane instanton correction is then given by

Λ(5) =
C

r(r + c)c|Q5| e
iQ5(σ+ 1

2
χϕ) e|Q5|(r− 1

4 (χ2+ϕ2))
∫ ∞

1
e−2|Q5|(r+c)t dt

t1+2c|Q5| . (B.21)

This result completes the derivation of the Λ(5) given in eq. (4.6).
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C. Solution of the master equation in the membrane case

After discussing the five-brane instanton corrections associated with the instanton ac-

tion (4.1) we now proceed with analyzing solutions of (3.15) corresponding to membrane

instantons. In order to obtain exact (linearized) solutions we again follow the two step

procedure of the previous section, i.e., we first carry out a perturbative analysis in gs
to gain some insights on the field dependence of the coefficient functions Ak(χ, ϕ). This

information is then used to refine the ansatz for the membrane case. Substituting this

improved ansatz into (3.15) then gives rise to a (partial) differential equation from which

the exact solution can be determined. This program will lead to two types of membrane

instanton corrections, the two charge membrane instanton corrections discussed in [14] and

the membrane instanton with five-brane charge associated with the instanton action (4.2).

The starting point of the analysis are again the results obtained in appendix A. These

are adapted to the membrane case by imposing

f1 = |Q5| = 0 , A0 = Ã0(χ, ϕ)eiQσσ (C.1)

with

Q2
σ = (∂χf1/2)2 + (∂ϕf1/2)2 . (C.2)

Eqs. (C.1) and (C.2) give rise to two distinct classes of solutions corresponding to Qσ = 0

and f1/2 being a positive constant and Qσ 6= 0 which leads to a field dependent leading

coefficient f1/2. We will now discuss these possibilities in turn.

C.1 Two-charge membrane instantons

We first consider the case Qσ = 0. Eq. (C.2) then implies that

f1/2 = 2|Q2| (C.3)

is a positive constant. Substituting this result into eq. (A.15), one finds that the coefficient

equation at order r1/2 does not impose further restrictions. The equation determining

Ã0(χ, ϕ) arises at order r0. Substituting (C.3) into (A.19) it becomes

(∂2
χ + ∂2

ϕ) Ã0 +Q2
2 Ã0 = 0 . (C.4)

At this stage it suffices to consider special solutions of the form

Ã0 = (a0 + ã0 η) eiQχχ+iQϕϕ, Q2
χ +Q2

ϕ = Q2
2 , (C.5)

with

η ≡ Qϕχ−Qχϕ , (C.6)

and arbitrary coefficients a0, ã0. The general solution of (C.4) is then obtained by super-

imposing the solution (C.5) for different values of the charges Qχ, Qϕ associated with the

two RR fields.

In order to get some information on the functions Ak/2(χ, ϕ), k ≥ 1 we consider the

coefficient function at order r−1/2. Using the results (C.3) and (C.5) together with the
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reality of A1/2 one obtains two equations corresponding to the real and imaginary part of

the coefficient multiplying r−1/2. The imaginary part gives rise to the equation

(Qχ ∂χ +Qϕ ∂ϕ)A1/2 = 0 , (C.7)

which indicates that

A1/2(χ, ϕ) = A1/2(η) (C.8)

is a function of η only. Using this result, the real part equation becomes a ordinary

differential equation for A1/2(η)

(a0 + ã0 η)
(
Q2

2 ∂
2
η A1/2 − 1

2 |Q2| (4α + 5)
)

+ 2 ã0 Q
2
2 ∂ηA1/2 = 0 . (C.9)

This equation is readily solved and one obtains

A1/2(η) =
1

2|Q2|
4α+ 5

a0 + ã0 η

(
1
6 ã0 η

3 + 1
2a0 η

2 + a1/2 η + ã1/2

)
. (C.10)

Here a1/2 and ã1/2 are real integration constants.

This pattern repeats itself for Ak/2(χ, ϕ), k ≥ 2. The partial differential equation

determining Ak/2 decomposes into real and imaginary part. The equation arising from the

imaginary part shows that Ak/2(χ, ϕ) = Ak/2(η). Thus we conclude that the functions

Ak/2(χ, ϕ), k ≥ 1 depend on χ, ϕ through the combination (C.6) only.

This result motivates refining the ansatz (4.3) to the form

Λ
(2)
1 = eiQχχ+iQϕϕ Z(r, η) , (C.11)

with Z(r, η) being an undetermined function. Substituting this ansatz into the master

equation (3.15) yields the following partial differential equation for Z(r, η)
[
(r + c) ∂2

r +Q2
2 ∂

2
η +

(
3 +

2c

r

)
∂r −Q2

2 +
1

r

]
Z(r, η) = 0 . (C.12)

The general solution can again be found by separation of variables Z(r, η) = f(r)g(η). The

equation for g(η) is

Q2
2∂

2
ηg = −λg , (C.13)

for arbitrary values of λ. However, for non-zero values of λ the resulting solutions have ei-

ther unphysical boundary conditions, or can be obtained by redefining the charges in (C.11).

The remaining case is when λ = 0 which leads to linear η dependence in Z(r, η) and does

not affect the r-dependent factor f(r).

For simplicity, we now focus on the class of solutions where Z(r, η) = Z(r) is η-

independent. The η-dependence can trivially be restored. The exact solution of (C.12) is

obtained by substituting

Z(r) = r−1Z̃(ξ(r)) , ξ = r + c , (C.14)

into (C.12). This leads to a modified Bessel equation for Z̃(ξ)

(ξ ∂2
ξ + ∂ξ −Q2

2) Z̃(ξ) = 0 . (C.15)
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Thus

Z(r) = C1 r
−1 I0

(
2|Q2|

√
r + c

)
+C2 r

−1K0

(
2|Q2|

√
r + c

)
, (C.16)

where I0 and K0 are modified Bessel functions of the second kind. The condition that the

instanton corrections are exponentially suppressed for small string coupling requires that

C1 = 0. Hence we obtain the following exact two-charge membrane solution

Λ
(2)
1 =

C

r
eiQχχ+iQϕϕK0

(
2
√
Q2
χ +Q2

ϕ

√
r + c

)
. (C.17)

This solution corresponds to the membrane instanton corrections discussed in [14]. The

η-dependence can be restored by replacing C → C1 + ηC2.

C.2 Membrane instantons with fivebrane charge

Let us now proceed and discuss the case Qσ 6= 0. This situation corresponds to a membrane

instanton with charge Q2 which may also include a five-brane charge Qσ. Starting point

of the analysis are again the results of appendix A adapted to the membrane case by

imposing (C.1) and (C.2). Considering the solution (A.14) with Q̃5 = Qσ we again have

the two distinct cases of y = y(χ, ϕ) and y = const, which will now be discussed in turn.

We first show that taking y = y(χ, ϕ) non-constant is not compatible with the re-

quirements (1) - (5). This can be seen from starting with the solution (A.22) and taking

Q5 = 0

A0 =
C eiQσ(σ+ 1

2 (tan y(χ2−F 2)−
R

((F ′)2−F 2)dy))
( χ

cos y + F tan y + F ′
)1/2 . (C.18)

In the limit Q5 = 0 the divergent terms in (A.22) are absent. In order to rule out such

solutions one has to proceed to the next non-trivial equation which is given by the real

part of (A.19). Using

% =
χ

cos y
+ F tan y + F ′, ∆F = F ′ +

∫
F dy, (C.19)

this equation becomes

2Qσ∂%A1/2(%, y) = Q2
2 +Q2Qσ(%−∆F )− Q2

σ

4
(12c + ∆F (2%−∆F ))

+
1

4%4

(
%2 − 2∆′′F%+ 5(∆′F )2

)
. (C.20)

The solution of this equation has a singularity in the limit Qσ → 0. This contradicts the

regularity condition (4). Thus this type of solutions is ruled out.

We then restrict ourselves to the case where y is constant. Using the U(1) isome-

try (2.8), one can perform a rotation in the χ-φ-plane such that f1/2 depends on χ only8

f1/2 = 2|Q2|+ |Qσ|χ , (C.21)

8We assume that we work in the region χ > 0.
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Adapting the result (A.25) then leads to

A0 = CeiQσσ+iQϕϕ . (C.22)

Subsequently A1/2 is determined by the real part of (A.19)

2|Qσ |∂χA1/2 = (2QσQϕ + |Q2||Qσ|)χ−Q2
σ

(
3

4
χ2 + 3c

)
+Q2

2 −Q2
ϕ . (C.23)

For Q2 andQϕ independent, the last two terms in this equation will give rise to a singularity

in A1/2 as Qσ → 0 which would be in disagreement with our condition (4). The two

possibilities to avoid this singularity are either taking Q2 ∝ Qσ and Qϕ ∝ Qσ or identifying

Q2
2 = Q2

ϕ . (C.24)

Requiring that Q2 is an independent charge which does not vanish in the limit when

Qσ → 0 indicates that one should choose the condition (C.24). It is then straightforward

to determine A1/2 by integrating (C.23),

A1/2 = −1

8
|Qσ|χ3 +

2ε+ 1

4
|Q2|χ2 − 3c

2
|Qσ|χ+ a1/2(ϕ), (C.25)

where ε = sign(Q2Qσ) is the relative sign of the two charges and a1/2 is arbitrary function.

Subsequently, one moves to higher orders in the perturbative expansion. Impos-

ing the reality of the Ak(χ, ϕ), k > 0, each order of the expansion gives rise to two

independent equations originating from the real and imaginary part of the coefficients.

Using the equations coming from the imaginary part one can proof by induction that

Ak(χ, ϕ) = Ak(χ), k > 0 are independent of ϕ while the χ-dependence of the Ak(χ) is

determined by the real parts of the expansion. In particular this result establishes that

a1/2(ϕ) appearing in (C.25) is constant.

The function A1(χ) is fixed by the differential equation at order r−1/2. Upon substi-

tuting the previous results this equation becomes

2|Qσ |∂χA1 = −(α+ 2)|Qσ |χ− (2α+ 2− ε)|Q2|. (C.26)

Similarly to the situation at the previous order the last term induces a singularity in Qσ

and should vanish separately. This fixes the parameter α to

α =
ε

2
− 1 . (C.27)

Integrating (C.26) then yields

A1 = −2 + ε

8
χ2 + a1 . (C.28)

At this point it is illustrative to consider one additional order in the perturbative

expansion, as this equation will give another restriction on the charges. Making use of the

previous results the equation at order r−3/2 determines A3/2(χ) and reads

2|Qσ|∂χA3/2 = 5
64 Q

2
σχ

4 − 1
8 |Qσ||Q2| (4ε+ 3) χ3 + 3

2 Q
2
2 (1 + ε) χ2 + 5

8Q
2
σ c χ

2

+|Qσ|
(

1
2a1/2 − c|Q2| (2 + 3ε)

)
χ+ |Q2|

(
a1/2 + c|Q2|

)
(C.29)

−1
4 (1 + ε) + 5

4 c
2 Q2

σ .

– 27 –



J
H
E
P
0
9
(
2
0
0
6
)
0
4
0

Requiring the absence of singularities in the limit Qσ → 0 then requires

ε = −1 , a1/2 = −c|Q2| . (C.30)

Remarkably this implies that the solutions where Q2 and Qσ have the same sign do not

satisfy condition (4) and only solutions with sign(Q2Qσ) = −1 are physical.

Summarizing the results of the perturbative analysis we obtain

Λ
(2)
2 = C r−3/2 eiQ2ϕ+iQσσ exp

[
−(2|Q2|+ χ|Qσ|)

√
r

−
(
|Q2|

(
1
4χ

2 + c
)

+ 1
2χ |Qσ|

(
1
4χ

2 + 3c
))√

r
−1

+ · · ·
]
, (C.31)

where sign(Q2Qσ) = −1.

We now use the input from the perturbative analysis to find an exact solution for

the membrane-fivebrane case. The ϕ-independence of the coefficients Ak, k > 0 thereby

motivates considering the refined ansatz

Λ
(2)
2 = eiQ2ϕ+iQσσZ(r, χ). (C.32)

Substituting this ansatz into the master equation (3.15) leads to the following partial

differential equation for Z(r, χ)

[
(r + c)∂2

r + ∂2
χ +

(
3 + 2c

r

)
∂r −Q2

σ

(
r + χ2 + 3c+ c2

r+c

)
−Q2

2 − 2χ|Q2Qσ|+
1

r

]
Z = 0,

(C.33)

where the condition sign(Q2Qσ) = −1 was used. As in the case of the fivebrane and

membrane instanton corrections (B.17) and (C.12), equation (C.33) is separable and may

be solved by separation of variables. Here we will, however, follow a different strategy

and use input from the perturbative analysis (C.31) and eq. (C.33) to further restrict the

ansatz (C.32). In this course we make the following observations. First notice that upon

substituting Z(r, χ) = r−1Z̃(r, χ), (C.33) becomes a partial differential equation for Z̃(r, χ)

which depends on the variable ξ = r+c only. This implies that Z̃(r, χ) depends on r through

the combination r + c. Second one observes that the terms proportional to Q2 in (C.31)

are the first two terms in the expansion of the instanton action (4.2) for large values of

r, up to c-dependent terms which are generated by replacing r → r + c in (4.2). Third

the perturbative result (C.31) shows that the perturbative expansion around the instanton

should start with r−3/2. Investigating solutions of (C.33) which obey these restrictions one

then arrives at the conclusion that Z(r, χ) should be of the form

Z(r, χ) =
C

r
√

4(r + c) + χ2
e−|Q2|

√
4(r+c)+χ2−|Qσ|f(r,χ), (C.34)

where f(r, χ) does not depend on the charges.

Substituting (C.34) into (C.33) leads to a differential equation for f(r, χ). This equa-

tion splits into three terms which are proportional to Q2
σ, Q2Qσ and |Qσ|, respectively.
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Since we assumed f(r, χ) to be charge-independent each of these terms has to vanish sep-

arately. This gives rise to the following three equations

ξ (∂ξf)2 + (∂χf)2 = ξ + χ2 + 2c+
c2

ξ
, (C.35)

2 ξ∂ξf + χ∂χf = χ
√

4 ξ + χ2, (C.36)

(
4 ξ + χ2

)
(∂2
χ + ξ ∂2

ξ )f +
(
χ2∂ξ − 2χ∂χ

)
f = 0 . (C.37)

Remarkably these equations are simultaneously solved by taking

f = 1
2 χ
√

4 ξ + χ2 − 2c log
[√

ξ
−1
(√

4 ξ + χ2 − χ
)]

. (C.38)

Thus the ansatz (C.34) indeed gives rise to a consistent solution of (C.33). The corre-

sponding exact membrane instanton correction is based on the instanton action (4.2) and

reads

Λ
(2)
2 = C

“√
r+c

−1
“√

4 (r+c)+χ2−χ
””2c|Qσ |

r
√

4(r+c)+χ2
eiQ2ϕ+iQσσ ×

× exp
[
−
(
|Q2|+ 1

2 χ |Qσ|
)√

4(r + c) + χ2
]
, (C.39)

where Q2 and Qσ must have opposite signs and χ > 0.
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